Reranker
Maximize the search relevancy and RAG accuracy with our cutting-edge reranker API.
Reranker API
Try our cutting-edge reranker API to maximize your search relevancy and RAG accuracy. Starting for free!
chevron_leftchevron_right
Number of returned documents
Example query
Example candidate documents to rank
upload
Request
curl https://api.jina.ai/v1/rerank \
-H "Content-Type: application/json" \
-H "Authorization: Bearer " \
-d @- <<EOFEOF
{
"query": "Organic skincare products for sensitive skin",
"top_n": 3,
"documents": [
"Organic skincare for sensitive skin with aloe vera and chamomile: Imagine the soothing embrace of nature with our organic skincare range, crafted specifically for sensitive skin. Infused with the calming properties of aloe vera and chamomile, each product provides gentle nourishment and protection. Say goodbye to irritation and hello to a glowing, healthy complexion.",
"New makeup trends focus on bold colors and innovative techniques: Step into the world of cutting-edge beauty with this seasons makeup trends. Bold, vibrant colors and groundbreaking techniques are redefining the art of makeup. From neon eyeliners to holographic highlighters, unleash your creativity and make a statement with every look.",
"Bio-Hautpflege für empfindliche Haut mit Aloe Vera und Kamille: Erleben Sie die wohltuende Wirkung unserer Bio-Hautpflege, speziell für empfindliche Haut entwickelt. Mit den beruhigenden Eigenschaften von Aloe Vera und Kamille pflegen und schützen unsere Produkte Ihre Haut auf natürliche Weise. Verabschieden Sie sich von Hautirritationen und genießen Sie einen strahlenden Teint.",
"Neue Make-up-Trends setzen auf kräftige Farben und innovative Techniken: Tauchen Sie ein in die Welt der modernen Schönheit mit den neuesten Make-up-Trends. Kräftige, lebendige Farben und innovative Techniken setzen neue Maßstäbe. Von auffälligen Eyelinern bis hin zu holografischen Highlightern – lassen Sie Ihrer Kreativität freien Lauf und setzen Sie jedes Mal ein Statement.",
"Cuidado de la piel orgánico para piel sensible con aloe vera y manzanilla: Descubre el poder de la naturaleza con nuestra línea de cuidado de la piel orgánico, diseñada especialmente para pieles sensibles. Enriquecidos con aloe vera y manzanilla, estos productos ofrecen una hidratación y protección suave. Despídete de las irritaciones y saluda a una piel radiante y saludable.",
"Las nuevas tendencias de maquillaje se centran en colores vivos y técnicas innovadoras: Entra en el fascinante mundo del maquillaje con las tendencias más actuales. Colores vivos y técnicas innovadoras están revolucionando el arte del maquillaje. Desde delineadores neón hasta iluminadores holográficos, desata tu creatividad y destaca en cada look.",
"针对敏感肌专门设计的天然有机护肤产品:体验由芦荟和洋甘菊提取物带来的自然呵护。我们的护肤产品特别为敏感肌设计,温和滋润,保护您的肌肤不受刺激。让您的肌肤告别不适,迎来健康光彩。",
"新的化妆趋势注重鲜艳的颜色和创新的技巧:进入化妆艺术的新纪元,本季的化妆趋势以大胆的颜色和创新的技巧为主。无论是霓虹眼线还是全息高光,每一款妆容都能让您脱颖而出,展现独特魅力。",
"敏感肌のために特別に設計された天然有機スキンケア製品: アロエベラとカモミールのやさしい力で、自然の抱擁を感じてください。敏感肌用に特別に設計された私たちのスキンケア製品は、肌に優しく栄養を与え、保護します。肌トラブルにさようなら、輝く健康な肌にこんにちは。",
"新しいメイクのトレンドは鮮やかな色と革新的な技術に焦点を当てています: 今シーズンのメイクアップトレンドは、大胆な色彩と革新的な技術に注目しています。ネオンアイライナーからホログラフィックハイライターまで、クリエイティビティを解き放ち、毎回ユニークなルックを演出しましょう。"
]
}
EOFEOF
The goal of a search system is to find the most relevant results quickly and efficiently. Traditionally, methods like BM25 or tf-idf have been used to rank search results based on keyword matching. Recent methods, such as embedding-based cosine similarity, have been implemented in many vector databases. These methods are straightforward but can sometimes miss the subtleties of language, and most importantly, the interaction between documents and a query's intent.
This is where the "reranker" shines. A reranker is an advanced AI model that takes the initial set of results from a search—often provided by an embeddings/token-based search—and reevaluates them to ensure they align more closely with the user's intent. It looks beyond the surface-level matching of terms to consider the deeper interaction between the search query and the content of the documents.
The reranker can significantly improve the search quality because it operates at a sub-document and sub-query level, meaning it looks at the individual words and phrases, their meanings, and how they relate to each other within the query and the documents. This results in a more precise and contextually relevant set of search results.
Jina Reranker v2 is the best-in-class reranker released on Jun 25th 2024; it is built for Agentic RAG. It features function-calling support, multilingual retrieval for over 100 languages, code search capabilities, and offers a 6x speedup over v1. Read more about v2 model.
Multilingual Retrieval
Function-Calling & Code Search
Tabular and Structured Data Support
Three Ways to Purchase
Subscribe to our API, purchase through cloud providers, or obtain a commercial license for your organization.
radio_button_unchecked
cloud
With 3 cloud service providers
radio_button_unchecked
encrypted
With a commercial license for on-prem use
On-premises deployment
Deploy Jina Reranker on AWS Sagemaker and Microsoft Azure and soon in Google Cloud Services, or contact our sales team to get customized Kubernetes deployments for your Virtual Private Cloud and on-premises servers.
AWS SageMaker
Embeddings
Reranker
Microsoft Azure
Embeddings
Reranker
Google Cloud
Embeddings
Reranker
Show benchmark for v2 model (latest)
MKQA (Multilingual Knowledge Questions and Answers)
BEIR (Heterogeneous Benchmark on Diverse IR Tasks)
ToolBench. The benchmark collects over 16 thousand public APIs and corresponding synthetically-generated instructions for using them in single and multi-API settings.
NSText2SQL
CodeSearchNet. The benchmark is a combination of queries in docstring and natural language formats, with labelled code-segments relevant to the queries.
Throughput of Jina Reranker v2 on RTX4090
Learning about Reranker
What is a reranker? Why is vector search or cosine similarity not enough? Learn about rerankers from the ground up with our comprehensive guide.
Rate Limit
Columns
arrow_drop_down
Product | API Endpoint | Descriptionarrow_upward | w/o API Key | w/ API Key | w/ Premium API Key | Average Latency | Token Usage Counting | Allowed Request | |
---|---|---|---|---|---|---|---|---|---|
Embedding API | https://api.jina.ai/v1/embeddings | Convert text/images to fixed-length vectors | block | 500 RPM & 1,000,000 TPM | 2,000 RPM & 5,000,000 TPM | bolt depends on the input size help | Count the number of tokens in the input request. | POST | |
Reranker API | https://api.jina.ai/v1/rerank | Tokenize and segment long text | block | 500 RPM & 1,000,000 TPM | 2,000 RPM & 5,000,000 TPM | bolt depends on the input size help | Count the number of tokens in the input request. | POST | |
Reader API | https://r.jina.ai | Convert URL to LLM-friendly text | 20 RPM | 200 RPM | 1000 RPM | 4.6s | Count the number of tokens in the output response. | GET/POST | |
Reader API | https://s.jina.ai | Search the web and convert results to LLM-friendly text | block | 40 RPM | 100 RPM | 8.7s | Count the number of tokens in the output response. | GET/POST | |
Reader API | https://g.jina.ai | Grounding a statement with web knowledge | block | 10 RPM | 30 RPM | 22.7s | Count the total number of tokens in the whole process. | GET/POST | |
Classifier API (Zero-shot) | https://api.jina.ai/v1/classify | Classify inputs using zero-shot classification | block | 200 RPM & 500,000 TPM | 1,000 RPM & 3,000,000 TPM | bolt depends on the input size | Tokens counted as: input_tokens + label_tokens | POST | |
Classifier API (Few-shot) | https://api.jina.ai/v1/classify | Classify inputs using a trained few-shot classifier | block | 20 RPM & 200,000 TPM | 60 RPM & 1,000,000 TPM | bolt depends on the input size | Tokens counted as: input_tokens | POST | |
Classifier API | https://api.jina.ai/v1/train | Train a classifier using labeled examples | block | 20 RPM & 200,000 TPM | 60 RPM & 1,000,000 TPM | bolt depends on the input size | Tokens counted as: input_tokens × num_iters | POST | |
Segmenter API | https://segment.jina.ai | Tokenize and segment long text | 20 RPM | 200 RPM | 1,000 RPM | 0.3s | Token is not counted as usage. | GET/POST |
CC BY-NC License Self-Check
play_arrow
Are you using our official API or official images on Azure or AWS?
play_arrow
done
Yes
play_arrow
Are you using a paid API key or free trial key?
play_arrow
Are you using our official model images on AWS and Azure?
play_arrow
close
No
Reranker-related common questions
How much does the Reranker API cost?
keyboard_arrow_down
What is the difference between the two rerankers?
keyboard_arrow_down
Is Jina Reranker open source?
keyboard_arrow_down
Does the reranker support multiple languages?
keyboard_arrow_down
What is the maximum length for queries and documents?
keyboard_arrow_down
What is the maximum number of documents I can rerank per query?
keyboard_arrow_down
What is the batch size and how many query-document tuples can I send in one request?
keyboard_arrow_down
What latency can I expect when reranking 100 documents?
keyboard_arrow_down
Can I deploy Jina Reranker on AWS?
keyboard_arrow_down
Do you offer a fine-tuned reranker on domain-specific data?
keyboard_arrow_down
API-related common questions
code
Can I use the same API key for embedding, reranking, reader, fine-tuning APIs?
keyboard_arrow_down
code
Can I monitor the token usage of my API key?
keyboard_arrow_down
code
What should I do if I forget my API key?
keyboard_arrow_down
code
Do API keys expire?
keyboard_arrow_down
code
Why is the first request for some models slow?
keyboard_arrow_down
code
Is user input data used for training your models?
keyboard_arrow_down
Billing-related common questions
attach_money
Is billing based on the number of sentences or requests?
keyboard_arrow_down
attach_money
Is there a free trial available for new users?
keyboard_arrow_down
attach_money
Are tokens charged for failed requests?
keyboard_arrow_down
attach_money
What payment methods are accepted?
keyboard_arrow_down
attach_money
Is invoicing available for token purchases?
keyboard_arrow_down